Как известно, боевой самолет наиболее уязвим на земле и на взлете, а дорогостоящие взлетно-посадочные полосы -едва ли не главная статья расходов современных ВВС и первоочередная цель для вражеской авиации. Поэтому авиаконструкторы десятилетиями бились над проблемой вертикального взлета, но решить ее удалось лишь освоив технологию управления вектором тяги, на основе которой созданы первые серийно выпускавшиеся СВВП -британский «Харриер» и советский Як-38. Очень похожие внешне, эти самолеты вертикального взлета и посадки имели совершенно разную судьбу. Пройдя длинную эволюцию и превратившись из неуклюжего «прыгуна» в эффективную боевую машину, «Харриер» дебютировал во время Фолклендского конфликта, принимал участие во многих локальных войнах, от Персидского залива и Афганистана до Балкан, и остается в строю до сих пор. В отличие от Як-38, который поднялся в воздух позже своего западного визави, но был снят с вооружения уже к началу 1990-х гг. Почему его служба оказалась столь недолгой? Из-за чего эта технология, представлявшаяся столь перспективной, так и не смогла потеснить традиционные машины даже в палубной авиации? И есть ли у самолетов вертикального взлета будущее - или они тупиковая ветвь в развитии авиапрома?
С тех самых пор, когда человек начал проектировать и строить аэропланы, способные относительно безопасно и быстро перемещаться в пространстве, его преследовало одно существенное ограничение: самолет требует довольно значительного места на земле для взлета и посадки. Чем больше и тяжелее летающая машина, чем больше людей и груза способна она поднять, тем больше требуется этого места. По мере создания все более современных самолетов возрастали требования к длине и качеству взлетно-посадочных полос, накладывая существенные ограничения на область практического применения авиации. Особенно острой эта проблема представлялась военным — ведь бомбардировка взлетно-посадочных полос авиацией противника могла легко парализовать действия собственных самолетов. Но человек - существо упрямое и находчивое, и с самого начала эпохи летательных аппаратов тяжелее воздуха он пытался заставить их взлететь если не вертикально, то с возможно более коротким разбегом.
Попытки создать геликоптер, предпринимаемые с самого начала XX века (в том числе и Игорем Сикорским ещё в киевский период его деятельности), поначалу оказались безуспешными — этим аппаратам элементарно недоставало двигателей с достаточно высокой удельной мощностью, ждали своего решения и целый ряд других технических проблем. Более перспективным казался автожир, использующий принцип авторотации несущего винта и тягу обычного самолетного двигателя. Такой аппарат вертикально взлететь не мог, но разбег, и особенно — пробег сокращались радикально. Созданные под руководством Хуана де ла Сиервы автожиры в 20-е — 30-е гг. завоевали значительную популярность, они строились по лицензии в раалнчных странах, а военные вовсю экспериментировали с применением новой «игрушки» в своих целях. Вскоре. однако, оказалось, что эти машины тоже отнюдь не идеальны - вертикально взлететь или зависнуть в воздухе они не могли, а полезная нагрузка автожиров была незначительной. И хотя во время Второй мировой войны такие аппараты даже участвовали в боях (например, советский автожир-корректировщик А-7-ЗА или немецкий безмоторный автожир Fa 330, применявшийся на подводных лодках), это участие было лишь эпизодическим и никоим образом не угрожало монополии самолетов.
В 40-е годы на новой технической основе начинается бурный прогресс вертолетостроения. В течение последующих десятилетий геликоптеры заняли очень важное место, как в военной, так и в гражданской авиации. Вертолет стаз очень удачной попыткой создания летательного аппарата - помимо вертикального взлета и посадки, он может зависать в воздухе. Он оказался идеальным для многих задач, которые были не по плечу самолетам. Однако и вертолет имеет свои ограничения. Да, он способен взлетать и садиться с площадок минимальных размеров, летать практически в произвольных плоскостях и направлениях. Но он не летает ни так быстро, как самолет, ни так высоко, ни так далеко. Вертолет неспособен приблизиться к скорости звука — не говоря уж о том. чтобы превзойти её.
Вскоре оказалось, что и дальше ощущается потребность в летательном аппарате, способном хотя бы частично совмещать характеристики вертолета (вертикальный взлет и посадка, свободное управляемое висение) и классического самолета (высокая скорость, большой потолок и дальность полета). И если гражданские эксплуатанты без такого аппарата могли ешё обойтись, то военные были крайне заинтересованы в создании боевого самолета вертикального взлета и посадки. Ведь, хотя вооруженные вертолеты стали весьма грозным оружием над полем боя, они не могли заменить многоцелевые истребители-бомбардировщики ни в воздушном бою, ни при изоляции района боевых действий. Обычный же истребитель, с успехом справлявшийся с этими задачами, требовал взлетно-посадочной полосы — хотя бы в виде палубы авианосца.
Проблема создания боевого самолета вертикального взлета представлялась неразрешимой — в чем могли убедиться, например, американцы, попытавшись создать винтовой истребитель вертикального взлета «Конвэр» XFY-1 «Пого», странную машину, взлетавшую из положения «стоя на хвосте». Однако разрешение проблемы лежало в совершенно иной плоскости, и путь к нему открыла мысль - применить на практике известное в принципе явление управления вектором тяги. Как и каждое новое изобретение в авиации, путь к внедрению его был труден, извилист и, увы, щедро окроплен кровью пилотов-испыта-телей. Но, в конце концов, концепция управления вектором тяги оказалась вполне жизнеспособной, и все серийные конструкции боевых самолетов вертикального взлета и посадки имеют в своей основе именно её: и британский (позже ставший американо-британским) «Харриер», и советский Як-38, и только внедряемая в производство модификация американского «Лайтнинга» II — F-35B. Эти машины разнятся не столько самими конструкторско-техническими решениями, сколько способом подхода к проблеме и её решению. Рассмотрим же подробнее то явление, которое называют управлением вектором тяги (УВТ), или же английской аббревиатурой VTC (Vector Trust Control).
Управление вектором тяги
Если попытаться дать самое простое определение термина, вынесенного в заглавие раздела, то получим примерно следующее: управление вектором тяги — это способность воздушного судна отклонять тягу, создаваемую его силовой установкой, от продольной оси самолета. Понятие это применяется, прежде всего, для воздушных судов с реактивным приводом (не только самолетов, но и ракет), однако может применяться и для самолетов с винтовым приводом (поршневым или турбовинтовым — например, MV-22 «Оспри»).
С практической точки зрения управление вектором тяги имеет две основные области применения:
• увеличение возможностей самолета в горизонтальном полете (прежде всего, в плане управляемости и маневренности);
• значительное сокращение разбега и пробега либо полное исключение этих этапов полета — то есть, вертикальный взлет и посадка.
Конструкторские подходы в двух указанных случаях весьма разнятся. Если в первом отклонение вектора тяги от оси самолета становит от нескольких до нескольких десятков градусов (как правило, в пределах 25-35 градусов), то для второго, особенно, если силовая установка должна обеспечить самолету вертикальный взлет и посадку, необходимо направлять тягу вниз, то есть, при горизонтально установленном двигателе отклонение вектора тяги должно составлять около 90 градусов (дело в том, что угол отклонения тяги из-за особенностей термодинамики не должен или не может равняться точно 90 градусов от горизонтали).
Остановимся чуть подробнее на первом случае, обозначаемом в английском языке как Vectoring in Forward Flight (VIFF), то есть, управление вектором тяги в горизонтальном полете. Целью его (в отношении боевых самолетов, прежде всего многоцелевых истребителей) является улучшение маневренности самолета и снижение радиолокационной заметности, что в сумме ведет к повышению его выживаемости на поле боя. Кроме того, значительно сокращается длина разбега и пробега. И хотя это может показаться странным, но отклонение вектора тяги на 20-30 градусов является с технологической точки зрения решением гораздо более поздним и сложным для реализации, чем отклонение на величину, близкую к 90 градусам. Такое решение применяется на практике лишь в боевых самолетах самых последних поколений, хотя и сулит бесспорные преимущества. Согласованная работа аэродинамических поверхностей управления с изменением вектора тяги существенно усиливает действие аэродинамических рулей. Самолет становится способным к более резким маневрам — в принципе, единственным ограничением становится стойкость организма пилота и конструкции летательного аппарата к перегрузкам. Кроме того, при маневрировании с отклонением вектора тяги самолет расходует меньше топлива, чем при маневрировании с применением только аэродинамических рулей — а значит, увеличивается дальность полета. Уменьшение длины разбега и пробега облегчает эксплуатацию с коротких ВПП (например, поврежденных в ходе боевых действий), полевых аэродромов или авианосцев.
Применение управления вектором тяги в горизонтальном полете может существенно повлиять и на конструкцию планера. Оно открывает путь к развитию самолетов-бесхвосток, лишенных не только горизонтального, но и вертикального оперения. Отсутствие оперения уменьшает аэродинамическое сопротивление и массу планера (то есть, снова уменьшается расход топлива и увеличивается дальность полета). Кроме того, уменьшается эффективная площадь рассеивания самолета, придавая ему черты «стеле».
Управление вектором тяги имеет и свои недостатки, о которых не стоит забывать, по крайней мере, на существующем уровне развития авиационной техники. К наиболее существенным из них относятся сложная конструкция и достаточно большая масса устройств управления вектором тяги.
На нынешнем этапе развития конструкции боевых самолетов приоритетным является применение управления вектором тяги в целях обеспечения вертикального взлета и посадки либо значительного сокращения разбега (самолет с управлением вектором тяги может не иметь возможности вертикального старта, или же быть способным взлетать вертикально лишь до определенного показателя взлетного веса) при сохранении возможности вертикальной посадки. Именно эти характеристики реализованы в «Харриере» и Як-38.
Итак, вернемся к «вертикалкам». Применение в таких самолетах управления вектором тяги имеет целью существенное изменение хода старта и посадки самолета. Оно существенно сокращает эти две фазы полета по сравнению с самолетами с классическими силовыми установками (реактивными либо винтовыми). В фазе старта это касается, в первую очередь, разбега, то есть, говоря попросту, пути, который должен преодолеть самолет до того момента, когда его крылья создадут достаточную несущую силу, способную оторвать самолет от земли и поднять его в воздух. В фазе посадки речь идет о пробеге, то есть, пути, который преодолевает самолет от момента касания колесами земли до остановки. Разбег и пробег определяют требования не только к длине, но и к качеству ВПП — ведь если самолет будет двигаться на большой скорости по достаточно длинной, но неровной или поврежденной полосе, то он рискует получить серьезные повреждения и даже разбиться.
Если же самолет будет оборудован устройствами управления вектором тяги в достаточно широком диапазоне, то взлет и посадка выглядят совершенно иначе. Такие самолеты в зависимости от их возможностей подразделяют на несколько групп:
• VTOL (Vertical Take off and Landing) - самолеты, способные осуществлять вертикальный взлет и посадку (СВ-ВП);
• STOL (Short Take off and Landing) - самолеты с коротким взлетом и посадкой (СКВП);
• VSTOL (Vertical Short Take off and Landing) — самолеты, способные осуществлять как вертикальный, так и короткий взлет и посадку (СКВВП);
• STOVL (Short Take off and Vertical Landing) - самолеты, мощность силовой установки которых не позволяет взлетать вертикально, но допускает вертикальную посадку (после снижения массы путем выработки топлива и сброса внешней подвески).
Самые первые исследования устойчивость аппарата вертикального взлета показывали, что при старте и посадке вектор несущей силы должен проходить через центр тяжести самолета, а её величина должна по крайней мере на 20% превышать массу планера.